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Abstract We show that FC-spaces due to Ding are particular types of L-spaces due to
Ben-El-Mechaiekh et al., and hence particular types of G-convex spaces. Some counter-
examples are given and related matters are also discussed.
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Since the concept of generalized convex spaces (simply, G-convex spaces) in the KKM
theory appeared in 1993 [35–37], a number of modifications or imitations have followed.
Such examples are L-spaces due to Ben-El-Mechaiekh et al. [1], spaces having property (H)
due to Huang [24], FC-spaces due to Ding [5–16,19], and others. In the present short note,
we show that all of such examples are particular forms of G-convex spaces contrary to the
routine claim of Ding that the class of FC-spaces contains L-spaces and G-convex spaces
as true subclasses. We believe that reputed journals should clarify such incorrect statements
in their publications.

Let 〈D〉 denote the set of all nonempty finite subsets of a set D. The following appeared
in [27–30,32,38]:

Definition 1 A generalized convex space or a G-convex space (X, D;�) consists of a topo-
logical space X , a nonempty set D, and a multimap � : 〈D〉 � X such that for each A ∈ 〈D〉
with the cardinality |A| = n + 1, there exists a continuous function φA : �n → �(A) such
that J ∈ 〈A〉 implies φA(�J ) ⊂ �(J ).
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Here, �n is the standard n-simplex with vertices {ei }n
i=0, and �J the face of �n corre-

sponding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an} and J = {ai0 , ai1 , . . . , aik } ⊂ A, then
�J = co{ei0 , ei1 , . . . , eik }. In certain cases, it is possible to assume �(A) = φA(�n). We
may write �A := �(A) for each A ∈ 〈D〉. In case X ⊃ D, the G-convex space is denoted
by (X ⊃ D;�).

For details on G-convex spaces, see [18,20,27–32,35–38], where basic theory was exten-
sively developed and lots of examples of G-convex spaces were given.

Examples 1

(1) The original KKM principle [25] is for the triple (�n ⊃ V ; co), where V is the set of
vertices and co : 〈V 〉 � �n the convex hull operation. This triple can be regarded as
(�n, N ;�), where N := {0, 1, . . . , n} and �A := co{ei | i ∈ A} for each A ⊂ N .

(2) Fan’s celebrated KKM lemma [21] is for (E ⊃ D; co), where D is a nonempty subset
of a topological vector space E .

These are the origins of our G-convex space (X, D;�). Note that any KKM type theorem
on (X;�) can not generalize the KKM principle and the Fan lemma. ��
For the definition of a G-convex space, at first in [35–37], we assumed X ⊃ D and an
additional condition that

(∗) for each A, B ∈ 〈D〉, A ⊂ B implies �A ⊂ �B .

This monotonicity was removed since 1998 in [27] and the restriction X ⊃ D since 1999
in [28]; see also [29–33,38]. However, note that most of useful examples of G-convex spaces
satisfy (∗), but, examples not satisfying (∗) seem to be artificial:

Examples 2 Let �3 = co V where V = {e0, e1, e2, e3}.
(1) As in the KKM principle, we have a G-convex space (�3, V ; co) where co : 〈V 〉 � �3

is the convex hull operator. Here (∗) holds.
(2) Let (�3, V ;�) be a G-convex space given by �{e0, e1} := co{e0, e1, e2} and �(N ) :=

co N for all other N ∈ 〈V 〉. Then � violates the isotonicity (∗).

In 1998, Ben-El-Mechaiekh et al.[1] defined an L-space (E, �), which is a particular form
of our G-convex space (X, D;�) [without assuming (∗)] for the case E = X = D.

Definition 2 [1]. An L-structure on a topological space E is given by a nonempty set-valued
map � : 〈E〉 → E verifying

(∗∗) for each A ∈ 〈E〉, say A = {x0, x1, ..., xn}, there exists a continuous function
f A : �n → �(A) such that for all J ⊂ {0, 1, ..., n}, f A(�J ) ⊂ �({xi , i ∈ J }).

The pair (E, �) is then called an L-space, and X ⊂ E is said to be L-convex if ∀A ∈ 〈X〉,
�(A) ⊂ X .

Then the authors of [1] stated that, in particular, if �, as in Definition 2[1] , verifies the
additional condition (∗), then the pair (E, �) is what is called by Park and Kim [36], a
G-convex space. This does not mean that the class of L-spaces contains G-convex spaces.
In fact, the authors of [1] imitated our definition of G-convex spaces and implicitly stated
that, under the condition (∗), their L-spaces reduce to our original G-convex spaces. From
the beginning, any L-space is a G-convex space and not conversely.

In order to give another justification of necessity of using the triple (X, D;�) instead of
the pair (E, �), we give examples:
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Examples 3

(1) The well-known Sperner theorem and Alexandorff-Pasynkoff’s theorem on n+1 closed
sets covering the n-simplex can be derived by applying the KKM principle to the triple
(�n, V ; co); see [34] and references therein. No other proof of these theorems using a
pair (E, �) appeared yet.

(2) In Shapley’s generalization of the KKM principle, a triple (�n, N ;�) appears, where
N := {0, 1, . . . , n} and �S := �S = co {ei | i ∈ S} for each S ∈ 〈N 〉; see [28] and
references therein.

(3) Let C := C[0, 1] be the class of all real continuous functions on [0, 1] and P := P[0, 1]
the subclass of all polynomials p(x) on x ∈ [0, 1] with real coefficients. Let ε > 0. For
each f ∈ C, choose a fixed p f ∈ P which is ε-near to f , that is, maxx∈[0,1] | f (x) −
p f (x)| < ε. Let � : 〈C〉 � P be defined by �A := co {p fi }n

i=0 ∈ P for each
A = { fi }n

i=0 ∈ 〈C〉. Moreover, let φA : �n → �A be a linear map such that ei �→ p fi .
Then (X, D;�) := (P, C;�) is a G-convex space satisfying condition (∗) and X � D.

(4) Similarly, by choosing a proper subset D of C, we can obtain G-convex spaces (X, D;�)

satisfying X � D or X � D. This is why we assumed X and D are not comparable in
general.

(5) Since there are various forms of the Stone-Weierstrass approximation theorem, we can
construct a large number of examples similar to the ones in (3) or (4). ��

Under the misconception that the class of L-spaces contains our G-convex spaces, a
number of careless authors [3,4,17,26,39] restated a number of particular results (with certain
defects) on L-spaces which are already known for G-convex spaces. All of these authors failed
to give any proper example justifying their misconception.

In [24], a topological space Y is said to have property (H) if, for each N = {y0, . . . , yn} ∈
〈Y 〉, there exists a continuous mapping ϕN : �n → Y . Then the following is introduced:

Definition 3 [24]. Let X be a nonempty set and Y be a topological space with property (H).
T : X → 2Y is said to be a generalized R-KKM mapping if for each {x0, . . . , xn} ∈ 〈X〉,
there exists N = {y0, . . . , yn} ∈ 〈Y 〉 such that

ϕN (�k) ⊂
k⋃

j=0

T xi j ,

for all {i0, . . . , ik} ⊂ {0, . . . , n}.
Adopting these concepts, in [24], its author obtained modifications of some known results

in the G-convex space theory in which we supplied a large number of examples of such
spaces. It is noteworthy that the authors of [2,8,17,19,24] adopted R-KKM maps and claimed
to obtain generalizations of known results without giving any justifications or any proper
examples.

For a G-convex space (X, D;�), a multimap F : D � X is called a KKM map if
�A ⊂ F(A) for each A ∈ 〈D〉.

We should recognize that, in the KKM theory on G-convex spaces, every argument is
related to the finite intersection property of functional values of KKM maps, in other words,
related to some N ∈ 〈D〉 in (X, D;�). Therefore, the works in [2,8,17,19,24] can be reduced
to the ones in our G-convex space theory as follows:

Proposition 1 Every argument on KKM maps on a space having property (H) can be
switched to the one for the G-convex space (Y, N ;�′) for some N ∈ 〈Y 〉 where

�′
J = �′(J ) := ϕN (�J ) for all J ∈ 〈N 〉.
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Moreover, we have

Proposition 2 A generalized R-KKM map T : X → 2Y is simply a KKM map for a G-convex
space (Y, X;�) satisfying the monotonicity (∗).

Proof Let A ∈ 〈X〉 with |A| = n +1. Then there corresponds an N ∈ 〈Y 〉 with |N | = n +1.
Define � : 〈X〉 � Y by �A := T (A) for each A ∈ 〈X〉. Then (Y, X;�) becomes a G-convex
space since, for each A with |A| = n + 1, we have a continuous function φA := ϕN : �n →
T (A) =: �(A) such that J ∈ 〈A〉 implies φA(�J ) ⊂ T (J ) =: �(J ). Moreover, note that
�A ⊂ T (A) for each A ∈ 〈X〉 and hence T : X � Y is a KKM map on a G-convex space
(Y, X;�). ��

Contrary to Proposition 2, Ding in [8] claimed as follows: “The above class of general-
ized R-KKM mappings include those classes of KKM mappings, H-KKM mappings, G-KKM
mappings, generalized G-KKM mappings, generalized S-KKM mappings, GLKKM mappings
and GMKKM mappings defined in topological vector spaces, H -spaces, G-convex spaces,
G-H-spaces, L-convex spaces and hyperconvex metric spaces, respectively, as true
subclasses.”

Therefore, all of the KKM type theorems on such variants are simple consequences of
our G-convex space theory. Consequently, all results in [8] are artificial disguised forms of
known ones having no proper examples.

In 2005, Ding [5] introduced the following notion of “a finitely continuous” topological
space (in short, FC-space):

Definition 4 [5]. (Y, {ϕN }) is said to be a FC-space if Y is a topological space and for each
N = {y0, . . . , yn} ∈ 〈Y 〉 where some elements in N may be same, there exists a continuous
mapping ϕN : �n → Y . A subset D of (Y, {ϕN }) is said to be a FC-subspace of Y if for
each N = {y0, . . . , yn} ∈ 〈Y 〉 and for each {yi0 , . . . , yik } ⊂ N ∩ D, ϕN (�k) ⊂ D where
�k = co{ei j : j = 0, . . . , k}.
Then Ding [5] wrote that “it is clear that the class of G-convex spaces (Y ;�) is a true subclass
of FC-spaces,” with no justification.

In 2006, Ding [6] added the following to Definition 4 [5]:

Definition 5 [6]. If A and B are two subsets of Y , B is said to be a FC-subspace of Y relative
to A if for each N = {y0, . . . , yn} ∈ 〈Y 〉 and for any {yi0 , . . . , yik } ⊂ A ∩ N , ϕN (�k) ⊂ B
where �k = co{ei j : j = 0, . . . , k}. If A = B, then B is called a FC-subspace of Y .

Then Ding [6] wrote: “It is easy to see that the class of FC-spaces includes the classes of
convex sets in topological vector spaces, C-spaces (or H -spaces) [23], G-convex spaces [36],
L-convex spaces [1], and many topological spaces with abstract convexity structure as true
subclasses. Hence, it is quite reasonable and valuable to study various nonlinear problems
in FC-spaces.” Here again he failed to give any justification or any proper example of his
space which is not G-convex. One wonders that how could a pair (Y, {ϕN }) generalize a triple
(X, D;�) in [36,37].

The above definition and Ding’s claim have appeared also in [7–16,22,40,41], and possibly
more. One dozen of such papers on FC-spaces have appeared within 2 years! In these papers,
known results in KKM theory on G-convex spaces are restated or modified for the so-called
FC-spaces. In order to prevent such unnecessary efforts, something has to be done.

Note that L-spaces, spaces having property (H), and FC-spaces have a family {φN } of
continuous functions. For such spaces we have the following:
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Proposition 3 A triple (X, D; {φN }) consisting of a topological space X, a nonempty set
D, and a family of continuous functions φN : �n → X for N ∈ 〈D〉 with the cardinality
|N | = n + 1, can be made into a G-convex space (X, D;�).

Proof This can be done at least in three ways.

(1) For each A ∈ 〈D〉, by putting �A := X , we obtain a trivial G-convex space (X, D;�).
(2) Let {�α}α be the family of maps �α : 〈D〉 � X giving a G-convex space (X, D;�α).

Note that, by (1), this family is not empty. Then, for each α and each A ∈ 〈D〉 with
|A| = n + 1, we have

φA(�n) ⊂ �α
A and φA(�J ) ⊂ �α

J for J ⊂ A.

Let � := ⋂
α �α , that is, �A = ⋂

α �α
A for each A ∈ 〈D〉. Then

φA(�n) ⊂ �A and φA(�J ) ⊂ �J for J ⊂ A.

Therefore,(X, D;�) is a G-convex space.
(3) Let N ∈ 〈D〉 with |N | = n+1. For each M ∈ 〈D〉 with N ⊂ M , M = {a0, . . . , am} and

N = {ai0 , . . . , ain }, there exists a subset φM (�M
n ) of X such that �M

n :=
co{ei j | j = 0, . . . , n} ⊂ �m . Now let

�N = �(N ) :=
⋃

M⊃N

φM (�M
n ).

Then � : 〈D〉 � X is well-defined and (X, D;�) becomes a G-convex space: For each
A ∈ 〈D〉 with |A| = n + 1, there exists a continuous map φA : �n � �(A) such that
J ∈ 〈A〉 implies φA(�J ) ⊂ �(J ). ��

Examples 4 Let (�3, V ; {φN }) be a triple where φN (�n) = �(N ) as in the preceding
Examples 2(2). Then

φ{e0,e1}(�1) = φ{e0,e1}(co {e0, e1}) = �{e0, e1} = co {e0, e1, e2},
where we may assume φ{e0,e1} is a surjective space-filling curve such that
φ{e0,e1}(e0) = e0 and φ{e0,e1}(e1) = e1. Then it is easily checked that � itself is the one in
the proof (3) of Proposition 3 corresponding to {φN }. ��

A nonempty subset Y of a topological vector space E is said to be almost convex if for
any neighborhood V of the origin 0 of E and for any finite subset {y1, y2, . . . , yn} of Y , there
exists a finite subset {z1, z2, . . . , zn} of Y , such that zi − yi ∈ V for each i = 1, . . . , n, and
co{z1, z2, . . . , zn} ⊂ Y .

Examples 5 Let Y be an almost convex dense subset of a subset D of E . Let V be a
given neighborhood of 0. For each A := {x0, x1, . . . , xn} ∈ 〈D〉, choose a subset B :=
{y0, y1, . . . , yn} ∈ 〈Y 〉 such that yi − xi ∈ V for each i = 0, 1, . . . , n and co B ⊂ Y . Define
a continuous function φA : �n → co B given by

φA : u =
n∑

i=0

λi (u)ei �→ φA(u) :=
n∑

i=0

λi (u)yi

for u ∈ �n . Then (Y, D; {φA}A∈〈D〉) can be made into a G-convex space. Note that Y ⊂ D.
��

From Proposition 3, contrary to Ding’s claim, we have the following:
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Proposition 4 An FC-space (Y, {ϕN }) can be made into an L-space (Y ;�), a particular
type of G-convex spaces (Y, D;�).

Proof In Definition 4 [5], we can eliminate the case where some elements in N may be same.
Then we can define a map � : 〈Y 〉 → Y as in the proof of Proposition 3. Therefore, the
so-called FC-spaces are L-spaces and hence very particular forms of our G-convex spaces.

��
Recall that our G-convex space (X, D;�) is originated from the KKM principle [25] and

the celebrated Ky Fan lemma [21] from the beginning. The case X = D is not applicable to
them and this is the most serious defect of L-spaces or FC-spaces. Hence, they are inadequate
for the KKM theory.

Now Ding’s FC-subspace relative to some subset A in Definition 5 [6] can be extended
as follows:

Definition 6 Let (E, D;�) be a G-convex space and X ⊂ E, D′ ⊂ D. Then X is called a
�-convex subset of (E, D;�) relative to D′ if for any N ∈ 〈D′〉, we have �N ⊂ X .

Recall that, for a G-convex space (E ⊃ D;�), we used to say that a subset X of E is
�-convex if, for any N ∈ 〈X ∩ D〉, we have �N ⊂ X . This is now saying that X is �-convex
relative to D′ := X ∩ D.

Therefore, instead of using the concept of an FC-subspace of (Y, {ϕN }) relative to A as
in Definition 5 [6], we may use a �-convex subset of the G-convex space (Y, D;�) relative
to A ⊂ D. Any interested reader can check this matter in all of [5–16,22,40,41].

For a topological space (X, T ), the compactly generated extension (or the k-extension)
Tk of the original topology T is a new topology of X finer than T such that Tk is the
collection of all compactly open [resp., compactly closed] subsets of (X, T ). Note that the
artificial terminology of compact interior, compact closure, etc., are not practical and can
be eliminated by switching the original topology of the underlying space to its compactly
generated extension; see [30].

Such inadequate artificial terminology was used in [3–6,10,13,16,22,41], but disappeared
or withdrawn in [7,11,12,14,15,19,40].

Finally, in the recent study on abstract convex spaces in [32,33], basic theorems on
G-convex spaces are further generalized.
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